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ASYMPTOTIC THEORY FOR NCPARAhETRIC CONFIDENCE INTERVALS

Peter W. Glynn

1. Introduction

The problem of assigning nonparanetric confidence intervals has

recently been the focus of renewed attention. One impetus has been

the development of the "bootstrap" method by EFRON (1979) as a general

nonparametric statistical tool. BICKEL and FREEDMAN (1981), as well

as SINGH (1981), have shown that the bootstrap's distributional

approximation is asymptotically valid in a wide variety of circum-

stances, while EFRON (1981) has studied, in particular, the boot-

strap's viability for setting confidence intervals. The recognitiop

that computing power is increasingly available has allowed statisti-

cians to consider confidence interval methods, such as the bootstrap,

that are coputationally more complex but statistically better behaved

than previous techniques. The pivotal transformation of JOHNSON

(1978) is another such procedure.

Nonparametric confidence interval methodology has also attracted

considerable study in the Monte Carlo simulation literature; see CRANE

and LEMOINE (1977), FISHMAN (1978), and LAW and KELTON (1982), for

example. The idea is to assign confidence intervals to point

estimators obtained from a simulation output sequence, in order to

give the simulator an assessment of the estimates' variability.

The simulation applications mentioned above dictate that we

analyze the confidence interval problem for ratio estimators. To be
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precise, we shall consider the problem of estimating r - i%/ n

from a sequence of Independent and Identically distributed (i.I.d.)

random vectors (r.v.'s) "(!a,'rd; a > 1), where Z(IYl+ nj<

and Kt, * 0. Of course, the classical nouparametric situation is

captured as a special case, by setting Tn 2 1.

The organization of this chapter Is as follows. In Section 2, we

show that ratio estimators arise naturally in the context of the sms-

lation and/or statistical analysis of ergodic quantities associated

with regenerative stochastic processes. Section 3 discusses the basic

central limit theorem (CLT) on which all the confidence Interval

methods to be considered in this chapter will be based. Asymptotic

error analysis of these techniques requires certain tools from the

theory of Edgeworth expansions. In Section 4, resultr of

DWTACHARAIA and GEOSH (1978) and GOTZE and HIPP (1978) are extended

to accomodate the generalizations required by the ratio estimator

problem.

In Section 5, we obtain a rigorous Edgeworth expansion for the

ratio estimator pivot statistic. This extends the work of CRUNG

(1946) from the classical case to the ratio problem (the formulas

there contain some errors, however; see WALLACE (1958), p. 642). This

enables us, in Section 6, to analyse the error asymptotics of the

ratio pivot confidence Interval, as well as two related Intervals. In

particular, we are able to precisely Identify the effect of the

Student t-correction (i.e., using Student t-quantiles rather than

normsl quantiles In the limit approximation) on coverage.
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In Section 7, we extend Johnson's pivotal transformation to ratio

pivots, and show that it corrects for the asymmetry effects of order

n71/ 2  (n is the sample size) that occur in the standard pivot.

Section 8 presents a second-order pivotal transformation which

corrects coverage error in the standard pivot to order n -1 . It

turns out that this second-order pivot is the nonparametric analogue

of a transformation suggested by HOTELLING and FRANKEL (1938) to

normalize" Student t-variates. Section 9 discusses computational

issues and displays results of Monte Carlo sampling experiments in

which the coverage characteristics of the pivotal transformations were

compared with those of the untransformed pivot.

2. Some Applications of Ratio Estimator Confidence Intervals

The possibility of extending confidence interval methodology from

the classical framework to the ratio estimator context has been

previously studied in the statistical literature. For example, ROY

and POTTHOFF (1958) discuss this problem in the case where (7, n)

has a bivariate normal distribution. Their motivation stemmed from

applications in which a comparison of t Yn and gin, In terms of

their ratio, is desired. For instance, in evaluating the effect of a

treatment, the ratio of the mean of the treated population to the mean

of the untreated population is of interest.

More recently, this problem has attracted considerable attention

in the simulation comunity. Consider a measurable regenerative

stochastic process (Xt; t > 0) (see SMITH (1955) for a complete
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discussion). Then, there exist random times T1 ( T2 < -.. with

Tn e such that the vectors ((Yk(f), N); k> 1) are I.i.d., where

Yk(f) f f f(%*)do
Tit

a

IT T l-Tk

for any suitably measurable real-valued function f. It can be shown

(see [131) that it E(Yn (If) + ) < -, then

t
f f(X)ds/t- r(f) a En(f)/E' n  a.s.
0

Hence, development of confidence intervals for ergodic quantities such

as r(f), in the context of regenerative processes, leads naturally to

the study of ratio estimators. For a complete discussion of the

simulation issues related to regenerative ratA, estimates, we refer

the reader to IGLEHART (1978), and Chapter 6 of RUINMRNI (1981).

Of course, it is clear that the regenerative approach is equally

applicable to the nonparametric analysis of utatistical data modelled

as a regenerative stochastic process (for example, finite state Narkov

chains). Accession For
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3. (ofidence intervals for Ratio zatimator.

For the remainder of this chapter, e sume that E(IY3I+II)<.,
Zin * 0, and 0 < 02 (z) < , where Zk - Yk - rvk' Also, without

loss of generality, we assume that ft n > 0 (otherwise, we pass to

(Yn -n))" For a generic sequence (i; i > 1) of i.i.d. r.v's,

we shall use the notation qk - N/k, and 1

The r.v. ls

miI 1/;n

a

i -

.tn ~I ni/ 2 (rn-r)

(we interpret a product involving an indicator to be zero if the

indicator is zero) play an important role in ratio estimator

confidence intervals. To be precise, it is not difficult to show that

rn + r a.s. and that

ix
(3.1) W(x) ?( < z) f (u)du W()

n-n



where #(u) -(20)/ exp(-u /2). The CLT (3.1) proves that

[L (p). K (p)] (0 < pj a ) is an approximate 100 (1-a)Z confidence

Interval for r, where

Ln~ rn vna la 1 UI)

(3.2) R(p) rn vn(P) I - vn(P+l-U)I
n n n

V () X() 1/2 1/2-

and z(p) - 1(p). in order to study the error asymptotic. of the

above itrvals, wen Introduce the error descriptors

i(p) - P~r < L Wp) - (a-p)j

en (p) - P{Ln(p) j r < R(p))- (1-a).

The term n( P) measures the coverage probability error in the
interval IL n(p), Rn(p)], whereas the term n~p) n~ rvd h

one-sided coverage errors. The one-sided errors will assist us In

evaluating the degree to which the above nonparametrIc confidence

interval captures the asymetry which Is present in paramtric.

confidence Intervals (a"e [91 for a discussion of this point).
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In analogy with the classical nonparametric case, two other

intervals are natural to consider. Let t3  be the pivot obtained

from tn  by replacing vn  with v n, where v* a ((n-l)In)vn.

Intervals [Ln(p), L*(p)], with errors ln(p)*, tn(p)*, and cn(p)* .

are defined analogously to (3.2) and (3.3).

A second alternative In to use the Student t-distribution with k

degrees of freedom. Let zk(p) be the p'th quantlhe of such a

distribution. Then, zk(p) + z(p) as k + - (PEuSER (1943)), and

thus, in light of the parametric theory for the bivariate normal case,

It Is of Interest to consider the intervals, [L'(p), Rn(p)], with

errors en(p)', c,(p)', and en(p)' , constructed by substituting

z -,(p) for z(p) in Vn(P).

Before concluding this section, we observe that if 9 1n 1+<

for a > 0, Chebyshev's inequality Implies that

(3.4)' e{; n j_ 0) _j Z(A )/(n 1/2 E-F )K

where K is an even integer lying in the interval (s, s+21. It is

easily verified algebraically that E(, )t  remains bounded, so

-.n712.
P( <}-o(n 1). Then,

(3.5) A1(p) - -%(z(p+1-,)) + o(-,- /2)
n

n , _=(p)(p) + on(~p) on - / 2

n(p)- G(z(p+l-a)) - Gn(z(p)) + o(n - e 2 ) ,

7
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,where %n(X) a P(z) 4 (x), provided I -rim < *.Analogous

expressions hold for the error3 for the other confidence intervals.

Thus, the discussion of confidence Interval error leads to study of

asymptotle~ expansions for Gn(x).

4. Edgeworth Expansions for Smooth Statistics

BHATTACHARAYA and GROSE (1978) have recently, shown that the

"delta method' for deriving Edgeworth expansions is rigorously correct

f or a wide class of statistics. To be precise, suppose that

{Vn: n > 0) is a sequence of i.i.d. &-dimensional r.v. 's, and let

fit 0.'fk be real-valued Borel. measurable functions on R Put

Di -(f (Vif (V

and let No 1 9 age.., Ba be real-valued functions on 1k such that

II
of p. The objective is to establish an asymptotic expansion for thet distribution of

(4.1) A n 1 n/2( s nk/2 [U)- k1)cf) + an

where



I'

d .. -k2 - kf 2O(n-*)
k-i

and cii +1 * -k/2 +

en-I+k-12 n cksa+0n(81 2

are sequences of deterministic constants. The form of n- 1/2 A

n

outside a neighborhood of L can be taken as an arbitrary real-valued

measurable function of Un (the constants an, Cn add a flexibility

which will be necessary later; see (7.2) and (8.3), for example).

We shall henceforth assume, in our study of An, that the

covariance matrix I associated with U is non-singular. This can

be done, without loss of generality, by replacing 1, f , ...' fk by

a maximal (in terms of number of elements) collection 1, fl, ..., fip

of functions linearly independent as elements of the L2  space of

r.v.'s (see [I, p. 442, for details).

.The "delta method" begins by expanding Hi(u) to (s+1-i)

term, as a Taylor series about u - . This yields a polynomial

Es,i(u) of degree (s+l-i) and gives rise to a differential

approximation As,n Of An  as follows:

(4.2) Am n - n I/2( nk/[Hsk(Un ) - Hsk(u)]cn) + an .k-0n

This can be re-written in the form

(4.3) A (U)- n -k/2 P (U + o(n-s12

sn a k- sk n



wuhere P 2, k is a polynomial of degree k+1 and o(n-/ 2) is

independent of %1 . Assuming that U 1 has sufficiently many finite

moments, the J'th cumulant K in of A s has the form

- +j~ +~ -s

Note that K J~.depends exclusively on moments of order less t)
j~2

equal to *+I. Let a, he the variance of P 80(U n), which we -

henceforth assume to be positive and finite. A reasonable approxima-

tion to the characteristic function Of A sn(and hence A n is

A therefore

(4.5) exp(-a t /8) exp(I + I+ SAj. (icj - b ,0)

Expanding the second exponential yields the expression

(4.6) exp(-O t 2/2) [1 + f nr/ Xr(it)I + o(n -s/
r-1

s-sf

where 'XI, is. are polynomials not depending on n. The Fourier

transform i. corresponds to the signed measure%sn

10



-r/2
(4.7) 4*s5 n(v)dv I(1+ n a n(-d/dv)] *(v/a) dv/ta

r-1r

which is the formal Edgeworth expansion of the distribution Of An.

(4.8) THOREK 1) Suppose that RjUn13 < a. Then,

(4.9) P{A3 x -) ef z (V/0) d/ (-/

where o(u71/2) is uniform in x.

ii) Suppose that 1aul s+2 < -, and that U1I + owe+ U, has a

n-zero Lebesgue density component (in Rk) for some 1. Then,

(4.10)~ ~ ~ s( ) ,8u vdn on-/

where .o(ns 2 ) is uniform over all Uorel sets B. The function

%ncan be calculated via the 'delta method' (4.2) through (4.7).

Although the proof given in [11 restricts its attention to the

case where an - 0, c. - 1, and Hk -* 0 for k > 1, the

argument readily extends to the more general situation considered

here, the only complication being additional notational complexity.

In some related work, CEIBISOV (1972) proved Theorem 4.8 (11) in

the case where Tn was of the polynomial form (4.3) (no identifica-

tion of *ps,n as the expansion obtained via the "delta method" was

made, however). An extension to the general non-polynomial case was

effected via the following "perturbation" theorem (see [41, p. 629).

11



(4.11) 7HROM. Suppose that A' - A + 2-(s+1)/2 Xn tmra A

n a

satisfies the assuptions of Tbeorem 4.8(U1) and P {k.1 > a / 2 pn

- o(n a 2) for acme sequence p., 0. Then,

P(Iz). o. ,w--/az)I
KA < X) - *,..nO,)d.V + n

where o(n-8l 2 ) in unif orm in x.

It is clear that the 4#g,n of Theorem 4.11 must be that

obtained via the "delta method".

We remark that the density assumption on the Uijs in Theorem

4.8(11) follows if Vi has a Lebesgue density component which is

positive on an open set where 1, fit "°., f are linearly indepen-

dent as continuous functions (see Lea 2.2, [11). Also, we note that

the moment conditions in Theorem 4.8 are norm independent, due to the

fact that all norms on fLuite-dizmnsional spaces are equivalent.

Because of the potentially large number of derivatives required

in calculating the expansions Hs,k(u), it Is convenient to consider

a modification of the "delta method". Towards this end, let 9(j;u)

be polynomials of d6gree p(s+I), and set

0 n_ B(j; n)
-,

12



(4.12) PO0SOITOSI . Suppose tht . - 0 atla fles

,M %+ 0 In probabLity (i.e., - (a-12 )). am, :f

% l (*+1)p < -, m have I Ap  I KOn °-/2)"

Proof. The remainder RU can be written in the form

a
R - 1 n- : 1 2 R(j; i)

where l(J;u) are polynomials in u of degree p(s+1). We nov show

that R(J;u) vanishes for J < s. Starting with J - 0, observe that

1(o; Un) -> (o; N)

(=-> denotes weak convergence), where N is a multivariate normal

r.v. with non-singular covariance matrix E. Evidently, since

s/2an R2n - o (1) and Rn - 1(O; Un) - op(1), it must be that R(O;N)

is degenerate at 0. On the other hand, if R(O;u) depends non-

trivially on ui (say), then the Jacobian of the transformation

u. (Ul, ... , u,_, R(0;u), Ui+l, ... , uk ) is non-singular, and thus

it follows that R(0;N) has a Lebesgue density. This contradiction

forces R(0;u) to vanish identically. Repeating the argument s

more times proves that

a
,R. - n 2 (j ; i).

13



Under the momant conditions given here, ER(J; Un) E ZR(J;N) and

consequently SR. - o(n -s/2), proving our result. I

Our final goal in this section is to show that the Edgeworth

expansion (4.5) remains valid, in a certain sense, when the density

assumption on the distribution of U is dropped. Let Cb(R) be the

class of all bounded infinitely differentiable functions and take

C,(R) - {f : D*f e Cb(R), for all n) (D - d/dx). The class C,(R)

includes the trigonometric functions sin(tx), cos(tx), as well as the

Schwartz class S (sea IHATTACKARAA and RAO (1976), p. 257). we

first need the following proposition.

(4.13) ---- . (i) Let f a C:(R), ad suppoe a is a

ialtiimiez (I.e., a UO-egative Integral vector) with I.

(.62. Vae, If Unl < -, there exists a multivariate dgeorth

panio CUm of the distribution U such that

(4.14) "(U f(p.N)) - m a f(p.u) C., (u)d, + o(n "%/2)

holds, for any vector p.

(1) if ua +r 2 < ., them the ehaft-of-varlables formula

(4.15) f (..(u)) €,,( -f(y) *,,(y)d + o(, a 2)

holds for sll bostuded measurale f.

14



Proof. (i) We use Theorem 3.6 of 1141, and observe that boundedness

of the derivatives of f Implies that

(DO P. D1 .. where D - b/x)for all multifodices 0 with
1 0* iI~

J < a. This in sufficient for (i), In the presence of EfIUm+2 < -

(ii) Lems 2.1 of [I) proves that (4.15) holds uniformly over

all indicator functions f. For an arbitrary bounded f, approximate

f by a finite linear combination of indicators fjn such that

If(z) - E dj .n fj .n(x) I < 2' for all x

Then, letting #(f)- be the difference between the two Integrals In

(4.15), and using the Rahn decomposition on the signed measure

show.that

j# SI 2 -a(f IC,n(u)Idu + f I~~~yly + lI'j,n 0(j~~

< 0(2-n +sup lf(x) 1  - o(n )2

where the uniformity over indicators is used in the final step. I

15



Our next theorem shows that Theorem 4.8 continues to hold, In

expectation, when the density assumption on U is deleted. We impose

rather strong assumptions on U, and the class of test functions f

allowed, in order to simplify the exposition.

(4.16) 03otE. Suppose that on has finite ummts of all

orders. Then, for any s,

(4.17) 3f(A3 ) -a f(y) 4* (Y)dy + o(n - s/ 2 )

for all f c (i). The fun tlm %5.. can be ident:ifed through the

delta method."

Proof. First, observe that for any e > 0, there exists K > 0 such

that

(4.18) p{iW-I > K I<n(I > U ,})

The probability on the right-hand side of (4.18) is o(n7- / 2 ) (see

Corollary 17.12 of 121)i and hence

'f(T n ) - E(f(T ); IUn-pt < 0 + o(n " 1 2

Choose c sufficiently small that D:( *+ 2 - k ) %(u) is continuous on
an e-neighborhood of p for a11 k. Ulpending An  on (IU,7-&l < e}

yields

-16



+-.(s+l)12 s +2-k(4.19) Alm A~ s n X UIR0 c3(U3.V)+-k~

where V 0 ( 1 ' ... DO1~ and Ii'k~-PIU < e. Note that i.k(rk~) are

bounded r.v.'s in (4.19).

Thus, we can write f (T n) on (IU -PU < C) as

f(A) I (A -P O,(U)) (Dkf) (P (U ))/kt
k-0 , ,

+ (An - P (U)6 (D8+1 f)(TI )f(s+1)I
o'n n

which evidently can be re-written as

f(A U~ U-./2 rjn% ln; )

For J r ,1' has the formU p.)(gcc( ) whrafo

J> at r ,n aIs the Product of functions Of this forim with bounded

functions. Thus, for 1 < a,

z(r .; 15,70l < C)

-irj,,3  ~(U-h/2) f Jrj Cu) Cs,n (u)du + O 62

the first equality by uniform integrability of (rj,n)o the second

by Proposition 4.13(1). A similar argument for j > g shows that

17



J-6+1

and hene

Ef(A n) -f n-/2 rj (u)~ cn(u)du+ o(n s/)

-f A (u)~ (u)du+ o(n a/)fs'n s,n

Applying Proposition 4.13(11) completes the proof of (4.17). The

identification of 4'a,n(Y) as that derived from the "delta method"

follows from a proof identical to that found on pages 445-6 of [1]. 1

We remark that* an imediate consequence of Theorem 4.16 is that,

under the assumptions stated, the characteristic function Of An

can be expanded as

E exp(it An) -4 (i)+ o(n/2 *

5. Edgeworth Expansions for Ratio Estimator Pivots

An Section 4 illustrates, the key to obtaining Edgeworth expan-

lons is the calculation of cumulants (see (4.4)) of the differential

approximation AS,,u. The required moments will be derived from

Proposition 4.12. In this section, we will calculate Edgeworth

expansions for cn and t. to order Th Iis represents a

isi



different approach from that of GEARY (1947) and GAYEN (1949), who

formally expanded the distribution of the pivot tu (for the

classical case where In 1) in Charliar-type series.

We start by observing that the pivotal quantities t n  and tn

are invariant to the transformation (Yi, ) + (aY1 , C" i ) - (Yjij)

for a * 0. In particular, by taking a - lI/a(Z), we can assume

throughout our calculations, via a passage to (Y. wi), that

a(Z) - 1. However, in stating our final conclusions, dependence on

a(Z) will be made explicit.

Our first order of business is to expand tn  and tn  in
*

differential-type approximations t2,n and t2,n" set 7k = ( ,:k)
2n 2 , Se V

and let fI(v) - VIP f2 v3V) = vI, f 4 (v) 1 5 v v2

Observe that rn-r = Z/In and that I{vnofn O} is identically 1

on a neighborhood of 0. Thus,

(5. 1)' t * Zk(1 -z V (v-) +.I (v *-1) 2 +o (n )1

where

Z n Y z n
(5.2) 1~ln i2 ze - r )I Ii

and - Z2-1. Mxpanding 1/; n  in a Taylor series about 1/E, we

obtain

19
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(53 I/n 'n/ (aTn p

where we use 0 P(nk/2) to represent a sequence of r.v.ls Knsuch

that n K4 remains bounded in probability (see p. 8 of SIRILING

(1980)). Also,

(5.4) 2 1 11 lv/n - (rn+r) I 2t/

n n 2
m2 z I I /n i/n

Relations (5.1) through (5.4) imply that

(5.5) t~ Znl W/2L +

nn/ + 3 a p

where4

Q a-c 1/9 - 2Z1-cg1I(ngv) + ZL6

and a - r~caMZEO) and 8 - Ev /(E.0 . In order to evalisate the

cuuants required, some moment Identities ara needed.

20



(5. 6) in0IU (1) Let (An~; u k 0) be a sequaence of 1. 1.d. r.v'a

WithK <- for al k. Then,

(a) aj3 lu/ -3

(b)k4 -2 *2+ -1/2 -4 -12 22

Ni5  -0n 1 /2C~~C4 + -2 -

(c) -I -1 F~)Rj ~

Cd I 6  -1 23 -/

(d) Z; - 5(KAj)+ n

Ce)3jh41 -0(1/2)

Su) ppose that {(A 3 3 ); a >1) Isa sequemmeof i.i.d.

k k
rev.'e with I&a < -, Ul < - for &ll k. Them,

(f) a-'3£2^_

-3(3IAI3)(K4i) + 0(312

()N 4 . A -/ 3 A A -1/2 2 -.2C 1(h U3B 3 0712ZA A11 + "Ai 1) 3 i)3& a

21



W jj - (uW2)(U2) + 12(EA1)2 IM2 + n

Qi) ui5~ 15(Z11) (FA72) + O-1I2

(k) k3 a *O(a1 1 2 ) If k~j is odd*m

Proof. For (I), observe that exchangeability of the sequence

(A.: n_> 0) provides a recursion in k, namely

E( I A -L k E Aj) (ill Aj)k
I-I i-I i-I

n

k k j+ n-o ki

where A,' A1-E i . Solving the recursion with initial condition

An -0 proves (I). For (ii), apply (1) to A,(s,t) = sA + t-

Poth sides of equations (a) through (e) are then polynomials in

(s,t). Identifying coefficients yields results (f) through (k). I

22
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Now, let p 3 E3/o3 (Z1). X (EZ4/a(z)) - 3, and

y EZz2 .1 az2 (Z )E Then,

EZ p , E W1 - X+2

(5.7)

2_
EZ 1  6 + 2a-2y . E - X+2

I

In view of Proposition 4.12, (5.5) through (5.7) provide the

asymptotic expansion

*t -1/2 + (-1
Et2,n = (n- /2)n 2+ o(n- ) .

Similar reasoning on the higher moments proves that

2 -2-

E(r2, ) 2= 1 + (6a 2 + 6y + 2P -36- 1Om)n -l + o(n- )

E(.3n) - (9a - 70/2)n - 1/2 + o(n- 1)
~* )

t(t2,)= 3 + (120 a2 + 60 y, + 28 p2_30 6 - 140 a1p 2X. - 6)n - 1

+ o(n - ).

The relevant expansions for tn may be easily obtained by

* -2
using the relation tn t n(l - 1/2n + O(n )). Consequently,

23



Et2,u " Et2,n

Et 2 u M *  2 n-1

3 3
Et - (t2,)

and 
E2 n 2 ,n

Et = E(t 2 )- 6n -

up to terms of order o(n-1).

Note that in the classical case where Tn 1, we have a - 0

and y " 6 - 1. The moment formulas for tn, when appropriately

simplified, are then in agreement with those found in [111 and 1121.

It should also be noted that in the classical case, the approximate

skewness E(t2 ,) 3 ((E(t2 ) 3) of t (t*) is -7 /2. This verifies

2,n 2 ,n Un is 7/.Tisvrfe

the empirical observation that positive skewness in the distribution

of Z leads to negative skewness in the pivots to and t* (see

SOPHISTER (1928), and NEYMAN and PEARSON (1928)).

The appropriate cumulants Z J,n of tn  are given by

2 nk/21
(5.8) KJ,n k 1 bJ,k + o(n-)

where

b - -/2

b Ib2, 0 =

b2 =v + 52 + 7p2 /4 - 36- 9at - 1

b3,1 - 6a - 2P

2 2
b 4 2  24y + 60 + 12 12 6 - 60 ap- 2X- 6
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and all other bik, are zero. For t. the bj~ of the
n*~

corresponding cumulants K Jn satisfy biJk b bik# excepting that

b2,2 b2,2+1

The following distribution fuinction T 2n(XW is obtained from

ICJ in the same way as passage was made from (4.4) to (4.7):

(5.9) y 2, (x O (x) - b1, / /

- (b2  + b 2)x *(x)/2n

+-b 3, 1x2 x6n1/2

- (b4,2 +- 4b 1 1 b3,1 ) (x 3_3x) O(x)/24n

- b2 ( 5- lx3+ 15x) O(x)/72n

Also, let T2,,(x) be the function obtained from (5.9) by

substituting b Jk in place of bj k.

(5. 10) OREKW W1 If E(Y + -r6) < -, then

F(ta < X) - O(Z) + O(n-1/2)

where o(nlI2) is omifors In in.
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(11) Suppose that 1(j.fk + I.,.k) <a for all k. Than,

Kf(tn) -f f(y) 12,d) + -1n

for All f C C,(l).

(ill) Suppose Z(Y8 +,w 8 ) <, an tt (Ti, -v) has a
n n

distribution with a Lebesgue dens 7,: component which is positive on

some open set In the plane. Then,

P( tn e R)- f Y2 n'(dy) + o(n1l)

where o(n 1l) Is uniform. over all Borel sets B.

(iv) Suppose v~ =-1. Then, If n?<-,adi h

distribution of In~ has a Lebesgue density component which is

positive on some ipterval, the analogue of (Iii) above holds. Tb.

function V2,n Is obtained fro (5.9) by formal substitution.

(v) Results (L) to (iv) are valid for t1  under the a

assumptions as for tn provided that I n substituted In place

Proof. The functions fl,., fS, being distinct polynomials,

are linearly independent so Theorem 4.8 anid 4.16 can be applied,
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yielding (i) to (iii). Part (iv) is handled as a special case, by

setting V, Y., and fl(v) - v, f 2 (v) - v 2 , and applying the same

argument as for (iii). I

As previously mentioned, a particularly Important application of

ratio estimation lies in the doain of ergodic analysis of

regenerative stochastic processes. It frequently occurs that the

regenerative sequence {(Yt' ' ); i > 1} constructed is such that Y

has a Lebesgue density component, whereas ri is a lattice r.v.

For example, this is the case that arises when {Xt; t > 0) is a

continuous time process constructed from a discrete time regenerative

process (Xn) via the formula

n

X V'I (t)tn {n<s<n+l)

Our next result addresses this class of processes.

(S.11) MORI. Suppose that I - an that has a

distribution with a Lebesgue density component which is positive on an

interval. Then,

Pt < Y n(z) + o(0 - 1 2 )

P(t < X) - Y(,n(2) + o(n - 1/ 2)
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umlozmy n z uh Y ,3 x)Is obtaned from T2 ,IU(z) by

deletng tWithk ffuciemt el.

Proof. The pivot tu can be expanded as

(5.12) t V U~ zooiZ - (1Z + 01 + ,6
n ~ ~ ~ ~~~:/ +T '. 1(n--- -7-

where 0(1/n) is deterministic and

- ( 0 Q,*)(.V 3 Hs

and R corresponds to tn via (4.1). Now, observe that Theorem

4.8(11), with a - 1, is applicable to the first term in (5.12).

Select t small enough so that (D'TH) (u) is bounded for

u-I < for al oltiindices % with 11 3. Le

P K(Inn/n) 1/2 for K to be chosen later. Then,

1/2P{Ix I > Pn n

<P{IxI > AK In u) + P(§;n% > T. in a)

Choose K sufficiently small so that (4.18) applies. Thus,
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and hence Theorem 4.11 Implies the result for t no Precisely the sam

argument works for t no I

6. Applications to Ratio Estimator Confidence Interval Estimation

In this section, we apply the Edgeworth expansions of Section 5 to

analysis of nonparametric ratio estimator confidence intervals.

(6.1) MWRDI (I) Suppose I(Y 6 + v6 ) < -. Theng(pup n

C (p) em an O~-l2). umiformly In p.

(11) Under the assumptions of Theorem 5.11,

r1p _-1-1/

en I~~~) - + o(n1)

en(p) - 1,3(z(p+1-U)) -Y,,(z(p)) - (1-rn) + on-/

uniforuly in p.

(iLii) Under either assuptionis (iLii) or (IT) of Theorem 5.10,
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sap YV2,8a(P+1-C)) -Y 2 .3 (Z(P)) -(1-d) + onl

unif ormly In p.

(iv) hesulte (1) to (111) are v&Ai for %A(p)*, e?(p)*, an

%8 (p)* under the sae assntims s for the t a errors, provided

V2 ise substituted In place of 2u

Proof. The results follow Immediately from (3.5), and Theorems; 5.10

amd 5. 11. 1

These expressions show that under reasonable assumptions the

-1/2coverage errors c n(p), c 1M(p)* are O(n )for p * a/2, whereas

for p - a/2, the coverage errors are 0(n ). Thus, using confidence

intervals based on p - az/2 leads to intervals that are asymptotical-

ly optimal in the sense of having shortest possible length and soot

accurate coverage rate. However, It is Important to realize that theIone-sided coverage errors are O(n -12) for all p, including
p a /2. Bence it must be that ELn(a/2), 1 (a/2)j (similarly for

IL n(a/2), 1. (a/2)1) achieves coverage error of 0(na ) via
n-1/

cancellation of one-sided errors of order O(n 1/) This suggests

that a "corrected Interval", in the sense of oae-sided error, can be

obtained by shifting the Interval slightly. This is in agreement with

par ame tric confidence interval theory, where intervals tend to be
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asymetric about the point estimate. We shall examine this question

further in Section 7.

The coverage errors en(a/2) and cn(a/2)* are given by

Cn(a/2) - -(b2 2 + b ,)x 4(x )Vn

-(b + 4b 1 b3 1 ) (x3-3x ) #(x )/12n

,2  I' 31a-

-b 2( 5 - 1Ox 3 + 15x ) *(x )/36n

en ( -/2)* -n(a/2) - a 4(xa)/n

where xa - z(1 - a/2). Recalling the definition of the bjk's (see

(5.7)) we see that c,(a/2) and e,(a/2)* have a tendency to be

negative, particularly if the Ztjs are highly skewed (i.e., 0 2  is

large). This tendency for nonparametric confidence intervals to

undercover has been exhibited empirically; see IGLBHAT (1975), for

example. The procedure of Section 8 will attempt to deal with this

coverage rate problem.

Note that the tn coverage error is always biased upwards from

that of t by an amount z(l-a/2) #(z(l-a/2))/n. This is ann

attractive property of tn, in comparison to tn, in view of the

undercoverage mentioned above. The cost associated with using tn,

rather than tn , is that the tn Interval is longer, asymptotically,

by an amount a(Z) z(l-a/2)/((Et) U 
3 1 2 ).

A similar analysis can be performed for the intervals [L(a/2),

Rn(a/2)]. PEISER (1943) showed that
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(6.2) s 1(p) - Z(p) + (z3(p) + z(p))/4n + o(nu° )

Thus, using the uniformity In x of the expansion 12,n(x), we get

W

(6.3) e (a/n)' - 12,n(z11_1 (1-a/2)) - V2,n(sn- (a/2)) - (I-a) + o(i - 1 1

- (U/2) + (x34z) #(x )/2n + o(n- )
n a a

where x. - z(I-a/2). Thus, the coverage rate for the interval

[L'(a/2), Z'(a/2)1 tends to be larger than that of tn , by an nount

3(xa+Za) #(x,)/2u. For highly skewed populations, this gives intervals

based on Student t-quantiles an advantage over those based on normal

quantiles. The use of Student t-quantiles comes at the cost of an

interval which is longer by an mount a(Z)(x 3+1 )/(Ev) n3 / 2 , however.
a a

Note that for samples from populations with normal Yj and

I " 1, n(a/2)' - o(n-), as expected.

7. Johnson's Pivotal Transformation

In Section 6, it was shown that under reasonably general

assumptions, the one-sided coverage errsrs for tn and t n are of

order O(n-1/2). These errors arise due to asymetry effects related

to skewness and ratio estimator bias. In a recent paper JOHNSON

(1978) considered, in the case where v a 1, a transformation of the

Pivot t n  derived on the basis of Cornish-Fisher expansions (see

CORNISH and FISHER (1937) for a discussion of these expansions)..

Empirical evidence collected by Johnson Indicated that the
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transformation led to intervals that reflected the "correct" degree of

asymmetry., We now Investigate the pivotal transformation of Johnson,

using the machinery developed In Section 4.

Consider the sequence

(7.1) Tn " t n + 0 n n7 1/ 2 + Pu(tn )2 071/ 2

where en- e U') P, P(%v ) and 0(.), p(o) are functions

analytic on a neighborhood of (I, a(z)). Let e - 0(p, o2(Z)),

p - p(i, o2 (Z)), and observe tr.:.t

(7.2) T a z +(di W /2 + 0+ pz)n + n1

where In is Op().

We nov use Proposition 4.12, Theorem 5.6, and relation (5.7) to

obtain the cumulant expressions

* L(T )" (-0/2 + a + + p) n- 1 2 + O(n1 l )  X

*2 (T,n) - 1 + o(n l )

*(Tl ) (-2p + 6a + 6P) 1/2 + O(n"1

Observe that by setting S - p/6, p - 0/3 - a, all three cumulants

above are reduced to O(n-l). This suggests setting .on - /6,

Pn =on/3 - n where
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(7.3) on aI(vn>O,;,o) 2 (YI - 3.)/(-v n

~f {V>,~*) T 1/2-

an =-I (V.>O,.,o (Yi - y, ) T/(nvn c)

Let T be defined through (7.1) and (7.3), substituting t* and v

for tu  and vn.

(7.4) ThRMR (1) qtppoee that IETnk + 1t1k) < for all k.

Tbon.

iU(Ta) - J f(y) *(y)dy + o(n- /2)

for all f C(t)..

(iL) i I(g + t ) < an f the density ae tion of

Theorem 5.11 hold. tha

P{T -1/2

P < Z) -(z) + o( -

Uniform ly In z.

(iii) mesults (1) and (iL), mder the asumptioms stated, ame

vwLld for Ta.

Pcoof. first, observe that Xn (see (7.2)) is the remainder term

from Taylor's theorem for T On the set {v > O, 't 0}, y has

the form
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xn (U.v) 3 Hn(un)/6

when n(,) In bounded on (In--1p < c). Now, apply Theorems

4.8(11) and 4.16, as in the proof of Theorem 5.11, to obtain (ii).

For (i), write

Ef(Tn) - Ef(Tn) + Exn Df(Tin)/n + o(n-1/2)

and argue as in the proof of Theorem 4.16. The proofs for Tn can be

handled similarly. I

We remark that the moment assumptions in Theorem 7.4 follow from

the fact that U must be expanded to include Y with kj - 3,

due to the presence of On in Tn.

For the classical case where vn - 1, the transformed pivots Tn

and T are precisely the statistics suggested by Johnson, up to a
1-1

term which is 0 (n-1). Note that Theorem 7.4 gives rigorous

substance to the statement that T (Tn ) "normalizes" Ct ( n ) in the
a n nn

sense of creating a r.v. which is closer to a normal. This is not

surprising, in light of the fact that Johnson's calculations were

based on Cornish-Pisher expansions, which are "normalization" series

(see 1301, p. 643).

Theorem 7.4 can be easily applied to coverage error asymptotics

to yield the following result: If (Ya,in) satisfies the

assumptions of Theorem 7.4(U1), then all the coverage errors

(one-sided as well as two-sided) for'intervals based on T3  or T
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are o( - 1/ 2 ) uniformly in the parameter p. Thus, the Johnson

pivotal transformation corrects for asymetry effects.

8. A Second-Order Pivotal Transformation

As discussed in Section 6, nouparamtric confidence intervals have

a tendency to undercover at small sample sizes. However, the analysis

of the symmetric intervals [Ln(a/2), iL(a/2 )] showed that the

coverage error is basically determined by the term in i-l of the

asymptotic expansion of P{tn < x). This suggests that any attempt

to correct the coverage rate of the symmetric intervals [Ln(a/2),

In(a/2 )) =ast deal with higher order error terms than those

considered by the Johnson pivotal transformation.

Consider the statistic

(8.1) - T + vntn n + ejt n -

where V = V(U) + ¢(n-3 /). +n n) +  (n-3  ) and V.),w(.)

are functions analytic on a neighborhood of p. Before proceeding

with an expansion of Tnt we state the following approximations:

(8.2) iM " " ny/o(-) + 0 (n

an in - %06/0(Z) + (n-3/2 )

36 S,-...-e--. .-



where - Z3a 3 (Z 1 ), Ni - Z1 1I/(O(Z) E ). Substituting (8.2) into

(8.1) yields the following expansion (for the purposes of calculation,

we take G(Z) = 1):

(8.3) T + (1-.1( -2a -+-1/2 - -1/2

+ (u3-;,,- -- ;-. o n i (I - 1

4 nn

+n + P(I-(W-2Z )n -)n - +M nZY/2nn n gn n

-- A - N n+ Zna) Za n

n n n + (n

Tv n + n +On

Proposition 5.12 can be used to calculate the cumulants of T':
n

(8.4) , 1(T') - o(n 3 / 2 )

2 d) - I + (38-7y-9a2+QpB-2/36+7 /3+6+2v+6w)n-'+ O(n
- 3/2)

w3 (Tr,) - 0(n,3 / 2 )

2 --3/2

IC4 (Tn) - (6k+40 /3.18+4Gm+128-24y-3a2+24)n - 1 + O(n"3/2 )

Once again, a judicious choice of v and w can reduce the order of

the above cunulants to O(n-3/2) n fact, choosing
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v - y /2 + 130 2 /72 - 3/4 - 5Xn/12

22Wn -r n + 3a n/12 - 6/2 + mP/2 - 2/1- 3/4 - Xn/4

where

X- m rT, (n

nl rnIV >0,O so (Yir' 1 n /,2 ni-I

n 2 -2

On '1({; o i n

yields a pair v - v(g), w - w(g) which reduces the above cumulant

expressions (8.4) to O(n-3/2).

(8.5) Dot,,, (1) Suppose that ( ,,k + I,, 1 Ik) < " for a.l k.

Ten,

R(T) I f(y) ,(y)dy + o(a-) for al.l f ().

(11) if 1i +Y.16 0 ) ( I (Y,) satis fLes the

demity assmtoos (5.10) (LIi) or (tv), tha
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F(T < z) O(z) +

uniformly in x.

Proof. We apply Theorems 4.8(ii) and 4.16 to Tn  (note that now

fourth moments of (Y ,v) must be included in U ). The

perturbation Xn of (8.3) is a Taylor series remainder similar to

that found in (7.2). One then argues as in the proof of Theorem 7.4

for Tn . I

It is interesting to examine the situation when sampling from

(Yi, ), where i I and Yi is normally distributed. In this

case,

t n t t3)n +0 (n - 3/ 21

Tn n n )n + p

• (n~~~- 3/2 ) sth te1n-rne
This, up a term of order 0 p(n is the Hotelling-Frankel

transformation, which was derived in [15]. This transformation was

designed as a device to transform a Student t-variate with n-1

degrees of freedoms into a r.v. with a "more" normal distribution.

Theorem 8.5 thus shows that is the nonparametric analogue of the

Hotelling-Frankel transformation.

Theorem 8.5 has important consequences for confidence interval

estimation. In particular, under assumption (8.5) (i1), the result

proves that all the coverage errors (one-sided and two-sided) for

-1
intervals based on are o(a ) uniformly in p. Thus, the

transformation (8.1) improves coverage rates, as well as corrects for

asynetry effects.
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9. Numerical Results

In this section, we report the results of a Monte Carlo study of

the coverage characteristics of "normal quantile" confidence intervals

based on. the pivots tn , Tn, and T .

(9.1) EXAMPLE. Choose %n 1 1 and let Yn have an exponential

distribution centered at 0 (i.e., P{Tn > y) - exp(-(y+1)) for

y > -1). This example was studied in [91.

(9.2) EXAMPLE. Let rn S 1, and suppose Yn has a chi-square

distribution with ,10 degrees of freedom. This example, as well as

(9.1), was considered in [191.

(9.3) EXAMPLE. Let (Wn; n > 1} be the sequence of consecutive

customer waiting times in an M/M/I queue with arrival intensity X = 5

and service intensity p - 10. The process (Wn} is then a Markov

chain which takes on the value 0 infinitely often. Returns to 0

constitute regeneration times for (Wn) and thus a sequence

{(Yi,vi)) of appropriate regenerative pairs can be constructed, with

a goal of estimating EW, the stationary waiting time. See tglehart

(1971) for more details on this process.

(9.4) EXAMPLE. Let {Bt; t > 0) be the busy-time process obtained

from the M/M/I queue of Example 9.3; i.e., Bt is 1 or 0 depending

on whether or not the server is busy at time t. This process

regenerates itself at those instants at which a customer arrives to

40



find a free server. Based on this sequence of regeneration times, a

confidence interval for the long-run proportion of tim that the

server is busy can be derived, yielding a sequence ((Y i -c I)) of

regenerative pairs.

For Examples 9.1 and 9.2, 2500 replications of the sampling

experiment were created; for Examples 9.3 and 9.4, 1000 replications.

Pseudo-random numbers were obtained from the Learmonth-Levis random

number generator (see LEA2RMONTH and LEWIS (1973) for a description).

The goal was to estimate P{*n < z(0.05)}, P{On > z(0.95)} and

PWz(.05) < t n < z(0.95)) for n-=t n, T U, and T n'

Note that both TnU and Tnare non-linear in the parameter r.

Thus in order to determine 10001-0Z confidence Interval boundarie"

based on these statistics, the zeros of some non-linear equations

must he found. Specifically, in the case of Tn , one first considers

the cubic polynomial

(9.5) f n Wx en n7 2 + x(l+ v n U1)+ X2 pun01/ + x 3 .n

Given some fixed e > 0, one then finds solutions xn(i) satisfying

f n(x n(i) - zisuch that I i- XnUiI < c, for z,- z(p+l-a),

z 2 ' z(p). Let E n be the event that such solutions exist uniquely,

with x (1) > x (2). on {v > 0, 'T 0), set

1/ 1/2-
Lpir - 1/2(I x n(1) +)11 z(p+l-a))I(n )
a ~ ~ a ~~E + lI

(9.6) 1/2 1/2-
R n(p) r - v n (I %x n(2) + (11aP)(
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-k/2 + < te (n

(ii) Under assumption (Hi) of theorem 8.5, the error asymptotics

Of [ 3(P), in(P) I ar o(n-), tniformly In p.

(Ift) if Wy; + -r) < -, then (P)-(P) 'a K3 (P)-L$p)0('

Proof. Because of the continuity of % n, vn, P,, and w n in

there exists 6 such that IU -gol < 6 implies all four estimatorsn

are within Yj of their limits. Bence, IU -pi < 6 implies that

fn~x)-xI < -1/2

(9.8) ((Df,)(x) - I I < K Tn-1/2

for some K, uniformly in x on (z L-C* z i+e]. Thus, for n

sufficiently large, f is monotone on (z i-c, z 1+C], with

f (ze)z > 0/2, and fn xi c) -- zi < -0/2, provided 157p <~ <6.

so, In. (iU%-ILI <6) for n sufficiently and hence 1 -P(E
--{U~L >6 ~ k/2 (418) provided Z 4k +-T 4k

Relation (9.8) also proves (iii), with the assistance ^f the strong

law of large numbers. For (ii), we use the fact that Theorem 4.8

allows the i's to be defined arbitrarily outside a neighborhood of
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For the pivots Tn  and Tn , a different approach is more
* n0

attractive. Observe that the exponential pivots Tea and T*e

defined by

(99) 1/2 2p ntn n-1/2
(" I{P n 2pn  (exp( 1-, ) - n) +Oen )

n n UI2

+ Ipn.0) (tn + en n- 1/ 2

*aeT defined similarly) saif *- n T*0 - 1T 0(n a n p n p
The pivots Ta and T are monotone in the parameter r, therebyn

avoiding some of the complications inherent in using Tn  or Tn. in

argument based on Theorem 4.16 proves that confidence intervals based

- *e
on To or Tn enjoy the same error asymptotics as those for Tn  or

Tn, up to order o(n 1/2),

-It should be noted, however, that the coverage estimates in

Examples 9.1 through 9.4 were computed using the estimators tn, Tn

and Ta explicitly. In other words, because the value of r was

known for each of the examples, the three pivots yere explicitly

calculated to determine which of the Intervals 1, - (-a, z(0.05)I,

12 - [s(O.05), x(0.95)J, and 13 - [:(O.95, -) covered the pivots. In

practice, of course, one would have to explicitly calculate the

confidence interval boundaries. For the pivot T., this would require

finding roots of the cubic fn(x), and substituting into (9.6).

Given the fact that f n(X) - x + 0(n71/2), Newton's method for

root-solving should be quite well-behaved, wnd hence the numerical

difficulties involved in solving (9.5) should not be too significant.
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Table 1 displays the results for the exponential and chi-square

examples. Table 2 illustrates the behavior of the pivots for the

//1 queueing process examples. It should be pointed out that

for the .19 process, ((Y ,- )) does not satisfy assumptions (ii) orn an
(iv) of Theorem (5.10), since rn is a lattice r.v. in this case.

However, it can be shown that the other three examples do satisfy the

conditions of Theorem 5.10.

Note that Examples 9.1 through 9.3 appear to confirm the error

asymptotics of Sections 6, 7, and 8. The pivot Tn  tends to

"balance" the one-sided coverage probabilities, moving them towards

their correct values of 0.05. This confirms the asymetry correction

induced by the Johnson pivotal transformation. The pivot Tn goes

one step further: It seems to deal reasonably well with the overall

confidence interval coverage rate. In Example 9.4, all three methods

do well. Such an outcome is not surprising, in light of the fact that

the sample skewness , for a sample size of 1000, was only 0.01.

4
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TABLE I

Exponentlal Chi-square
2500 replications 2500 replications

Sample
Size Pivot Coverage Rates Coverage Rates

II 12 13 I 12 X3

t 0.210 0.758 0.032 0.134 0.812 0.054n

5 T 0.173 0.793 0.034 0.120 0.823 0.057n

T 0.166 0.784 0.050 0.122 0.813 0.065n

t 0.154 0.820 0.026 0.092 0.866 0.042n

10 T 0.106 0.851 0.043 0.079 0.871 0.050
n

T 0.082 0.874 0.044 0.069 0.883 0.04S
nI

t 0.136 0.838 0.026 0.085 0.872 0.043n

15 Tn 0.096 0.860 0.044 0.068 0.878 0.054

T 0.061 0.897 0.042 0.060 0.890 0.050n

t 0.121 0.855 0.024 0.076 0.883 0.041

20 T 0.088 0.870 0.042 0.059 0.885 0.056

Tn 0.053 0.908 0.039 0.048 0.901 0.051

t 0.113 0.864 0.023 0.072 0.890 0.038
n*

25 Tn 0.075 0.881 0.044 0.058 0.888 0.054

T 0.040 0.925 0.035 0.052 0.902 0.046
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TABLE 2

Waiting Times W Busy Time B
n t

1000 replications 1000 replications
Sample
Size Pivot Coverage Rates Coverage Rates

Ii 12 13 1i 12 13

t 0.333 0.649 0.018 0.081 0.884 0.035

40 T 0.201 0.756 0.043 0.049 0.896 0.055

T 0.065 0.802 0.133 0.049 0.898 0.053a

t 0.256 0.726 0.018 0.067 0.893 0.040n

80 T 0.176 0.787 0.037 0.046 0.895 0.059

Tn 0.025 0.891 0.084 0.042 0.901 0.057

t 0.242 0.741 0.017 0.060 0.883 0.049a

120 T 0.148 0.809 0.043 0.052 0.889 0.058

Tn 0.020 0.910 0.070 0.052 0.889 0.059

t 0.219 0.767 0.014 0.372 0.878 0.050

160 n 0.131 0.833 0.036 0.053 0.386 0.06i

T n  0,018 0.937 0.045 0.054 0.885 0.061

tn 0.194 0.792 0.014 0.065 0.887 0.048

200 Tn 0.117 0.846 0.037 0.050 0.888 0.062

T 0.016 0.948 0.036 0.051 0.888 0.061
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TABLE 2 (cont'd)

Waiting Times WV Busy Time t

1000 replications 1000 replications
Sample
Size Pivot Coverage Rates Coverage Rates

I1 12 13 11 12 13

t 0.164 0.818 0.018 0.053 0.892 0.055

400 T 0.095 0.858 0.047 0.043 0.892 0.065

T 0.019 0.954 0.027 0.043 0.891 0.066

t 0.124 0.852 0.024 0.047 0.897 0.056
nSoo T U 0.075 0.873 0.052 0.041 0.894 0.0&5

T 0.027 0.945 0.028 0.041 0.895 0.064

t 0.121 0.844 0.035 0.057 0.882 0.061

1200 T 0.091 0.850 0.059 0.053 0.880 0.067a

T 0.038 0.926 0.036 0.052 0.881 0.067
n

t 0.108 0.857 0.035 0.049 0.890 0.061

1600 T 0.076 0.861 0.063 0.044 0.886 0.070a

0.037 0.924 0.039 0.044 0.885 0.071

t 0.103 0.859 0.038 0.048 0.893 0.059n

2000 T 0.073 0.858 0.069 0.043 0.892 0.065

0.044 0.911 0.045 0.043 0.892 0.0654
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